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SUMMARY

Experimental studies were made to evaluate some of the effects of
parameters such as Mach number, blade angle, and structural damping on
the flutter of model helicopter rotor blades in the hovering condition.
The model blades had NACA 23012 and 23018 airfoil sections and each was
tested at chordwise center-of-gravity locations of approximately 27.5
and 37 percent chord. Data were obtained at test-medium densities
ranging from 0.0012 to 0.0030 slug per cubic foot and at various pitch
angles up into the stall. Mixtures of air and Freon-12 were used for
the test medium in order to extend the tip Mach number range of the
tests to slightly above unity.

Forward movement of the blade chordwise center-of-gravity location
generally raised the flutter speeds at low pitch angles but had no
appreciable effect at high pitch angles. An increase in the structural
damping generally raised the flutter speed at high pitch angles. At a
given pitch angle, the flutter occurred at essentially constant dynamic
pressure for variations in density. A large beneficial effect of Mach
number was observed near the section critical Mach number and was such
that if flutter did not occur up to a tip Mach number of 0.73, it would
not occur at all. Out of these studies a criterion is tentatively
advanced which indicates design requirements for completely flutter-
free operation of helicopter blades.

The significant flutter data for a large number of tests along

with detailed descriptions of the models are included in tabular form
to facilitate more detailed analyses of the results presented.

INTRODUCTION

The possibility of rotor-blade flutter exists for some helicopters
of current and future types which are designed to operate at high tip

lSupersedes declassified NACA Research Memorandum L53D24k by George
W. Brooks and John E. Baker, 1953.
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speeds without being completely mass balanced about the blade l/h chord
at all spanwise positions (ref. 1). Although the general character-
istics of the flutter of propeller blades and wings in subsonic com-
pressible flows at pitch angles up to and including the stall region
have been studied by several investigators (e.g., refs. 2 and %), no
studies of similar nature have been reported in regard to helicopter
blades. Theoretical methods are available which may be used to estimate
the classical flutter speeds of helicopter blades in incompressible
flows (refs. 4 and 5), but as yet neither theoretical nor experimental
data have been presented for the prediction of the effects of compress-
ibility or blade stall. In consideration of the differences between
helicopter and propeller blades as to rigidity, structural damping,
radius-to-chord ratio, solidity, root fixity, airfoil section, and so
forth, some doubt exists as to the applicability of wing or propeller -
blade flutter data to the prediction of the flutter characteristics of
helicopter blades.

As a part of a general investigation of helicopter flutter, the
present program was initiated in an effort to determine the effects of
various parameters including Mach number, structural damping, and chord-
wise center-of-gravity location on flutter of model helicopter blades at
zero forward velocity. The models had flapping hinges and plan forms
representative of full-scale helicopter blades.

A portion of this investigation is devoted to the definition of a
stall-flutter criterion for the design of helicopter blades which can
be operated flutter-free throughout the pitch-angle range at all sub-
sonic blade tip Mach numbers. Inasmuch as blade twisting deformations
affect the blade pitch angle at flutter, and since the subject of blade
twist may be of some general interest, a brief study of blade twist
including the effects of Mach number is included.

SYMBOLS
a slope of 1ift curve, dcz/da
b blade half-chord, ft
c speed of sound in testing medium, ft/sec
Cy section 1ift coefficient
cy mean section 1lift coefficient
EI blade bending stiffness, lb-in.2

aJ blade torsional stiffness, 1b-in.?
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structural damping coefficient for first elastic bending mode
structural damping coefficient for second elastic bending mode

structural damping coefficient for first torsion mode
blade mass moment of inertia about elastic axis, slug-ftE/ft

mass moment of inertia of blade including blade shank about
flapping hinge, slug-ft2

mass moment of inertia of blade shank about flapping hinge,
slug-ft2

blade mass per unit length, slugs/ft

mass of blade shank, slugs

rotational Mach number

dynemic pressure, 1b/sq ft

nondimensional radius of gyration of blade section about
elastic axis, Ia/{nb2

rotor radius, ft
section speed, fps

gsection center-of-gravity location, percent chord
section elastic-axls location, percent chord

angle of attack, deg

mass constant of rotor blade, EbpaRu Iy

blade mass-density ratio, m/npr

blade pitch angle between chord line and plane of rotation,
deg

measured blade twist, deg
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p density of testing medium, slugs/cu ft

o rotor solidity, 2b/nR

we flutter frequency, radians/sec

Wy experimental nonrotating natural frequency for first elastic
1 flapwise bending mode, radians/sec

@y, experimental nonrotating natural frequency for second elastic
2 flapwise bending mode, radians/sec

ayy experimental nonrotating natural frequency for first torsion
mode, radians/sec

Subscripts:

o standard atmosphere

0.8R 0.8 rotor radius

t blade tip

c corrected for aerodynamic and dynamic twist
s initial setting

cr critical value

Notation for test rotor blades:
(£) forward chordwise center-of-gravity location

(r) rearward chordwise center-of-gravity location

APPARATUS AND TEST METHODS

The experimental investigations of helicopter-rotor-blade flutter
reported herein were conducted in the Langley vacuum sphere (ref. 2).
This facility consists of a steel tank in which is mounted a 500 horse-
power electric motor which is used to whirl the rotor assemblies. The
sphere can be evacuated to provide different air densities; or it can
be filled with Freon-12 gas, or mixtures of air and Freon-12, at various
densities. The combined use of air and Freon-12 provides g means for
studying independently the effects of Mach number and veloclty on
flutter,
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Blade configuration.- The blades used in the tests were designed to
be geometrically representative of normal helicopter configurations, and
to flutter at speeds which would yield useful data at Mach numbers where
compressibility effects might become important over a range of pitch
angles and chordwise center-of-gravity locations. The blades were of
composite wood construction with a stainless-steel rod (spar) embedded
in the wood and extending longitudinally along the quarter-chord line.
Three holes extending parallel to the main spar were routed in the
blades, one at each of the following points: 6.25, 50, and 62.5 per-
cent chord, as shown in figure 1. The chordwise center-of-gravity posi-
tion was varied by means of selective location of stainless-steel rods
or inserts in these holes. The structural damping of the blades was
varied in some cases by wrapping these rods with cloth.

The blades studied had NACA 23012 sections with chordwise center-
of -gravity locations of 27.5 and 37.3 percent chord, and NACA 23018 sec-
tions with chordwise center-of-gravity locations of 28.0 and 36.5 per-
cent chord. The rotor assembly including the blade, blade shank, hub,
and counterweights is shown in figure 2. The blades were tested as one-
blade configurations and the active portion of the blade extended from a
radius of 8 inches to a radius of 46 inches with a flapping hinge located
at a radius of 2.5 inches. No drag hinges were used. The centrifugal
forces were balanced by adjustable counterweights.

The blade dimensions, natural frequencies, and other pertinent
flutter parameters are given in table I. The frequencies were measured
with the blades mounted on the hub in the test condition, that is, free
to flap. The blades are grouped according to airfoil section, blades 1
to 5 having NACA 23012 airfoil sections and blades 6 to 9 having NACA
23018 airfoil sections. During the tests, blade 2 was observed to nave
warped slightly, resulting in an upward deflection of the trailing edge.
Models 1, 2, 3, and 4 were separate blades. Blade 5 was obtained by
wrapping the rods of blade 4 with cloth to increase the structural
damping. This also resulted in an increase in torsional stiffness.
Models 6 and 7 were also separate blades. The rods of blade 7 were
wrapped with cloth as previously mentioned. This modification resulted
in a blade having two new values of the torsional structural damping
coefficient; one value for low-amplitude vibrations and another for
high-amplitude vibrations. These new configurations are referred to as
blade 8 and blade 9, respectively. The blade numbers are accompanied by
the letters (f) and (r) which are used to designate forward and rearward
chordwise center-of-gravity locations, respectively.

Instrumentation and data observations.- Flutter data were obtained
through the use of wire strain gages cemented to the blades in such a
way as to indicate both torsional and bending deflections, figure 2.

The strain-gage outputs together with a tachometer signal for measuring
the rotational speed were recorded on oscillograph records such as shown




6 NACA TN 4005

in figure 3. The end of the blade was illuminated instantaneously at

a predetermined point in each revolution by means of a strobolight ener-
gized through a contactor on the motor shaft. The image of the blade
tip, thus obtained, was used to measure the pitch angles at the blade
tip by use of a telescope with the eyepiece graduated for angular meas-
urements. The pitch-angle measurements were then used to determine the
amount of blade twist for various test conditions.

Flutter testing procedure.- The blades were operated with the
pitch angle fixed at the blade root. The pitch angle was changed
between tests to obtain data over a range of pitch angles from about
80 to 30°. The operating procedure for each flutter test consisted of
slowly increasing the speed of the test blade until strong flutter was
first encountered, at which point an oscillograph record was taken.
The pitch angle at the blade tip was then measured at a slightly lower
speed (40 to 80 rpm lower) in order to have the blade in a more stable
condition. The flutter region was often penetrated, in attempting to
find an upper boundary, until either the flutter became too severe Or
the flutter region was traversed. In the latter case, a record was
taken upon reentering the flutter region from the top.

The effect of Mach number on the flutter characteristics was studied
by use of various mixtures of Freon-12 gas (sound speed approximately
equal to 500 fps) and air at various densities ranging from 0.0012 to
0.0030 slug per cubic foot. The blades were initially fluttered in air
at various densities after which they were tested in nearly pure
Freon-12 gas. The percentage of Freon-12 was then lowered by steps,
thus raising the sound speed of the mixture until the desired range of
sound speed had been covered. Flutter data were obtained at various
densities for each mixture by variation of the absolute pressure of the
testing medium. As a result of the flutter tests being made in the
aforementioned gaseous mediums over a relatively wide range of veloci-
ties, tip Mach numbers up to 1.1 could be reached, and the Reynolds
number at the blade tip for the tests varied from about 125,000 to
about 2,250,000.

RESULTS AND DISCUSSION

General Considerations

Flutter parameters and reference stations.- The flutter data are
presented as functions of the flutter speed coefficient V/bau, a design

parameter bau/c, the tip Mach number Mg, the density ratio p/po, and
the pitch angle 6. In some instances, the data are also presented in
terms of combinations of these parameters, for example, (V/hqj)dp/po.
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The significance of these parameters in propeller-blade and wing stall
flutter studies is recognized and discussed in some detail in refer-
ences 2 and 3.

The flutter speed coefficient as well as the blade pitch angles
and pitch-angle settings are referred to the station at 0.8R; however,
the Mach number and measured blade twist are referred to the blade tip.
These reference stations were chosen because (1) the velocity of the ele-
ment at 0.8 blade radius appears tco be more representative for flutter
than the element at 0.75 radius which is usually referred to in heli-
copter analyses, (2) the tip Mach number readily identifies the Mach
number at any radial location, and (3) the twist at the tip is the meas-
ured twist.

Lift coefficient.- In order to facilitate the estimation of the
blade loading at flutter, figure 4 shows the mean section 1lift coef-
ficient as a function of the pitch angle as calculated by means of ref-
erence 6 for an element located at the 0.8 blade radius assuming this
station to be typical. Inasmuch as the 1ift curves for NACA 23012 and
23018 airfoil sections are not appreciably different, a mean value of
the slope of the 1lift curve is assumed and a single mean-value curve of
57 plotted against 6 is presented for the representation of both
bledes.

Presentation of Flutter Data

The significant parameters for the blades tested are given in
table T and discussed in the previous section entitled apparatus and
test methods. The detailed results of the flutter investigation are
tabulated in table II, according to blade section, blade number, and
chordwise center-of-gravity location. The general sequence of presen-
tation corresponds closely to the order in which the data were taken.

Some of the general trends determined during the investigation are
discussed in the following paragraphs with the aid of samples of data
presented in figures 5 to 16. The presentation of the flutter results
is divided into two parts: the first relating to data taken at Mach
numbers where compressibility effects were found to be insignificant,
and the second relating to the effects of Mach number and the effects
of various flutter parameters at Mach numbers where compressibility
effects appeared to be important.

In addition to the experimental flutter investigation, a limited
study was made to determine blade twist as influenced by dynamic pres-
sure, flutter and divergence, and Mach number. The results of this
study are presented in the appendix and in table IIT and are discussed
with the aid of figures 17 to 21.
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Discussion of the Effects of Various Parameters
on Flutter at ILow Mach Numbers

Blade pitch angle.- The general shapes of the characteristic
flutter curves obtained for propeller blades and wings in essentially
incompressibile flows by plotting the flutter speed coefficient as a
function of the blade pitch angle or angle of attack have been estab-
lished by the work of several investigators (e.g., refs. 2 and 3).
Figures 5 to 8 of this paper present some experimental results of a
similar nature obtained for some model helicopter blades which show the
characteristic shapes of the flutter curves as well as the effect of
various flutter parameters.

The flutter data for a typical blade are shown in figure 5 where
both the flutter speed coefficient and the ratio of the flutter fre-
quency to blade first natural torsional frequency are plotted as a
funection of blade pitch angle. The curve of flutter speed coefficient,
or flutter curve, separates the stable and unstable regions; the unsta-
ble region being above the flutter curve. As the blade pitch angle is
increased, the flutter speed coefficient drops slightly at first and
then rapidly as the blade apparently begins to stall. As the pitch
angle is further increased, the flutter speed coefficient decreases
until some minimum value is reached. Further increases in pitch angle
result in a rather sharp rise in the flutter speed coefficient, possibly
due to a rearward shift in center of pressure arising from blade stall.
The curve of frequency ratio shows that a reduction in the value of the
flutter speed coefficient is accompanied by an increase in flutter
freaquency.

The upper portion of the flutter curve, corresponding to low pitch
angles, defines the reglon of classical flutter whereas the lower
portion of the curve defines the region of stall flutter. Classical
flutter usually involves a coupling of blade motion in at least two
degrees of freedom. Since flutter occurs in the mode representing
minimum potential, the significant modes for conventional helicopter
blades are probably blade torsion and flapping. As shown by the
frequency-ratio curve of figure 5, the classical flutter occurs at a
frequency considerably lower than the first torsion natursl frequency.
Stall flutter on the other hand is a predominantly torsional oscilla-
tion, the frequency of which is shown by figure 5 to be very nearly
equal to the first torsional natural frequency. Some flutter of the
wake-excited type (see ref. 7) was also obtained. This flutter occurred
at pitch-angle settings near OO, at speeds of the order of 85 percent
of the classical flutter speed, and at frequency ratios of the order

of £ - 0.80.
Uy
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Now that the characteristic shape of the flutter curve for a typi-
cal blade is established, the following paragraphs along with figures 6
to 9 will be devoted to an analysis of the effects of various flutter
parameters. The absence of data at low pitch angles 1is due to the fact
that the blades were designed so that the flutter speeds at high pitch
angles would be sufficiently high to permit the evaluation of Mach num-
bver effects when the blades were tested in mixtures of air and Freon-12.
Consequently, at low pitch angles, where the flutter speed is appreci-
ably higher, the maximum operating speed was limited by centrifugal
stresses rather than flutter.

Chordwise center-of-gravity location.- The effect of chordwise center-
of-gravity location on the flutter speed coefficient as a function of
blade pitch angle is shown in figure & for blades having both NACA 23012
and NACA 23018 airfoil sections. In each case, a rearward shift in
chordwise center-of-gravity location lowers the flutter speed coefficient
appreciably at the lower pitch anzles but has little effect on the mini-
men values obtained at high pitch angles in the stall region; a similar
effect was also obtained for some additional model tests wherein the
chordwise center-of-rravity location was moved forward as far as 22.5 per-
cent chord. This result is apnarently at variance with the results of a
similar investi,ation of propeller blades reported in reference 2 which
showed the value of the minimua flutter speed coefficient to be very
much a function of the chordwise center-of-gravity location. The rela-
tion of this difference in behavior to specific differences in propeller
and helicopter blade stall characteristics is not clear at present.

Airfoil section.- During the investigation, it was observed that one
of the blades had warped slightly, and this warping resulted in a slight
upward deflection or reflection of the trailing edge. The curve of flut-
ter speed coefficient as a function of blade pitch angle for this blade
is presented with a similar curve for a blade wlthout reflex trailing
edge in figure 7. A comparison of the respective curves shows that, at
pitch angles in the region of transition between classical and stall
flutter, the flutter speed ccefficient is considerably less for the blade
having the reflex trailing edge than for the blade without the reflex
trailing edge. The difference between the curves decreases, however, as
the pitch angle Increases and becomes nonexistent at stall. The earlier
transition from classical flutter to stall flutter for the warped blade
may be caused by the negative camber due toc the warping. The data in
reference 8 show that blades having less camber have lower flutter bound-
aries at pitch angles lower than the stall.

A comparison of the data presented in figures 8(a) and 8(b) shows
that, at pitch angles of the order of 14°, the discrepancies between
the flutter curves of the blades having different airfoil sections are
small. As the pitch angle is increased, the flutter speed coefficients,
for blades having similar torsional structural damping coefficients but
different airfoll thickness, are considerably different. This appears
to be due to the relative indifference of the minimum flutter speed
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coefficient for the 18-percent-thick blades to variations in structural
damping in the range of g, = 0.06.

Structural damping.- The most pronounced effect of structural
damping at low Mach numbers occurred at blade pitch angles in the stall
region. Figure 8(a) shows that, for blades having NACA 23012 airfoil
sections, the minimum flutter speed coefficient is increased appreciably
by raising the torsional structural damping coefficient from g, = 0.049

to 0.067. A variation in damping over a similar range <ga = 0.054 +to

0.069), as shown in figure 8(b), did not appreciably affect the minimum

flutter speed coefficient of the blades having NACA 23018 airfoil sec-
tions. However, when the structural damping coefficient for the NACA
23018 airfoil section was approximately tripled, a significant rise in
the minimum flutter speed coefficient was obtained.

In addition to the effect of structural damping on the magnitude of
the minimum flutter speed coefficient, it was observed that the flutter
which occurred on the blades having high torsional structural damping
coefficients was usually more violent than the flutter of the blades
having low structural damping coefficients. This effect was more pro-
nounced at the pitch-angle setting corresponding to the minimum flutter
speed coefficient, and may be due to the coupled effects of nonlineari-
ties in the structural and aerodynamic properties of the blades while
operating in the flutter region.

Density.- Although the discussion presented in the previous sec-
tions was limited to data obtained at atmospheric density, data were
also obtained at densities ranging from approximately 0.0012 to
0.00%0 slug per cubic foot. Inasmuch as the flutter speeds obtained
during the tests were found to be a function of the density, the ques-
tion arose as to the most convenient method of presenting the data for
different densities. An empirical expression for the classical flutter
speed of a wing is given in reference 9 which shows the flutter speed
to be inversely proportional to the square root of the density of the
testing medium for wings having small values of the bending-to-torsion
frequency ratio and values of l/K > 10. Since the values of these
parameters for the blades tested were well within the limits given in
reference 9, there was reason to expect that, at low pitch angles in
the region of classical flutter, the blades would flutter at constant
dynamic pressure at a given pitch angle. This proved to be the case
not only at low pitch angles but at high pitch angles as well. This 1is
shown by the samples of data presented in figure 9 where the flutter
speed coefficient is plotted as a function of the density ratio for
medium and high pitch angles. Inasmuch as the straight lines through

the data points show that VO.BR/b“d = ClJpo/p, then by simple manipu-
lation it can be shown that %pV2 = Cp, where C;, and Cp, are constants
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which depend on the slope of the straight line and consequently are
functions of the blade-pitch-angle setting. The high pitch-angle
setting is near the stall angle, and the flow 1s probably of a non-
potential nature at least during a portion of the flutter cyecle.

The fact that the flutter at high pitch angles occurred at con-
stant dynamic pressure rather than constant velocity is at varlance
with most of the experimental results previously obtalned for wings
and propellers, references 2 and 3. This difference may be due to the
fact that the structural damping is much greater 1n the present case
than for previous tests, or it might be due to aerodynamic differences
associated with the different alrfoil sections. The analytlcal and
experimental investigation of reference 3 indlcates that when the struc-
tural damping is very low, the minimum value of the flutter speed coef-
ficient is essentially independent of density and the flutter will
depend on the aerodynamic damping of torsional osclllations. The aero-
dynamic damping coefficients are shown in reference 3 to be a function
of velocity and chordwise locatlon of the torsional axis of rotation and
independent of density. If, for a given axls of rotation, a region of
negative damping exists, then the flutter velocity is equal to the
velocity at which the aerodynamic damping becomes negative. However, if
the structural damping is substantial, as 1s generally the case for
helicopter blades, then the minimum flutter speed 1s shown in reference 3
to increase as the function gl(rag/n) increases. If ga(rh?/n) be

written in the equivalent form ga(Ll/npbu), then the minimum flutter

speed is shown to increase as the density decreases, a condition which is
borne out by the results of the present investigation. Whether a similar
effect would be obtained by varying the mass moment of inertia I, at

constant density is uncertain since no tests of this nature were made.

Discussion of the Effects of Various Parameters
on Flutter at High Tip Mach Numbers

The fact that the flutter at a given pitch angle occurred at con-
stant dynamic pressure, as previously discussed, greatly simplifies
the presentation of the data at higher Mach numbers. It effectively
means that these data, taken at various densities and Mach numbers, can
be represented by single curves for the different pitch-angle settings.
The data presented in figure 10 for three ranges of density ratio show
that the flutter boundaries obtained by plotting the flutter speed
coefficient as a function of tip Mach number for various pitch-angle
settings are not altered appreciably by changes in density when the
flutter speed coefficient is modified by the square root of the density
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ratio. This simplification is employed in subsequent discussion where
the data taken at various densitles are plotted in terms of the modified

flutter speed coefficient (VO.BR/bab)Jp/po'

Samples of the experimental data showing the effects of Mach num-
ber on the modified flutter speed coefficient at various blade pitch
angles are shown in figures 11 and 12. These data are replotted in
another form in figures 13 to 16 for use in establishing a design cri-
terion. The operating line shown in figure 11(a) represents the line
along which a given helicopter blade operates as the rotor speed is
varied in a medium having a constant speed of sound. The slope of the
operating line is inversely proportional to bWy and directly propor-
tional to the sound speed. Variation of any of these factors will
result in an operating line having a different slope.

Blade pitch angle.- The trends of flutter speed coefficient with
blade pitch angle at the lower Mach numbers as shown in figures 11
and 12 are the same as those presented in figures 5 to 8. As the Mach
number is increased, for each pitch-angle setting lower than the angles
for minimum flutter speed coefficients, a reduction is noted in the
flutter speed coefficient until some Mach number of the order of magni-
tude of the tip-section critical Mach number is reached. Further
increases in Mach number result in a rapid rise in the flutter speed
coefficient.

Although the decrease in the flutter speed coefficient is in the
direction associated with compressibility effects, blade twist arising
from aserodynamic forces and centrifugal body forces may be a contrib-
uting factor. The data are not sufficient to permit a generalization
at this time as to the magnitude or direction of twist effects. How-
ever, some effects of Mach number on blade twist are discussed in the
appendix. The tendency for a reduction in flutter speed coefficient
with increasing Mach number diminishes and essentlally disappears at a
pitch angle approximately equal to the angle for minimum flutter speed
coefficient. The magnitude of the reduction in flutter speed coefficient
with increasing Mach number appears to vary somewhat from blade to blade.
This is shown by a comparison of figures 11(a) and 11(b) where similar
data are presented for blades number 2(r) and 3(r), respectively. The
primary difference between the blades is the structural damping coef-
ficient for torsion (see table I); the damping coefficient of blade 3(r)
being sbout half that of blade 2(r). :

The turnback of the flutter curves for the various pitch-angle
settings represents a beneficial Mach number effect which is very simi-
lar to that exhibited by propellers (ref. 2). This beneficial effect is
possibly due to a rearward shift of the center of pressure. An envelope
flutter boundary can be drawn which separates the flutter regions for all
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pitch-angle settings from the flutter-free or stable regions as shown
by the crosshatched curves of figures 11 and 12.

Airfoil thickness.- A comparison of figures 11(a) and 12(a) shows
that the minimum flutter speed coefficient of the envelope flutter
boundary for the 12-percent-thick blade is somewhat higher than that
for the 18-percent-thick blade. In addition, the envelope flutter
boundary for the 12-percent-thick blede turns back much more abruptly
than that for the 18-percent-thick blade; however, the envelope flutter
boundaries for both blades extend to a maximum Mach number of 0.73. 1In
both cases the individual flutter boundaries, for some blade-pitch-angle
settings and at Mach numbers above the Mach number at which the turnback
occurs, do not tend to coincide with the respective envelope flutter
boundaries but rise more steeply. This effect is noted for the
18-percent-thick blade at pitch-angle settings of 11.3%0, 16.19, and
20.1°, all of which are lower than the angle for minimum flutter speed
coefficient. For the 12-percent-thick blade, the effect is evident at
8 pitch-angle setting of 21.70, which is greater than the angle at which
the minimum flutter speed coefficient occurs. In this case, the flutter
boundary turns back before the envelope flutter boundary is reached.

The existence of flutter boundaries which lie within the envelope
flutter boundaries is a beneficiasl effect of Mach number over and above
that exhibited by the envelope flutter boundaries themselves.

Section center-of-gravity location.- The effect of chordwise
center-of -gravity location on the turnback of the flutter boundaries
for different pitch-angle settings is shown for the 18-percent-thick
blade by a comparison of figures 12(a) and 12(b). The data indicate
that the turnback of the individual flutter boundaries for the higher
pitch angles occurs at lower Mach numbers for the blade having the
forward center-of-gravity location. This trend of the flutter bounda-
ries indicates that an increase in Mach number results in a rearward
shift of the center of pressure, the effect df which 1is apparently
greater at high pitch angles. Inasmuch as the forward chordwise center-
of-gravity location is near the quarter chord, (sbout 28.0 percent),
only a slight rearward movement in center of pressure 1s necessary to
alter appreciably the blade torsional moments, and therefore it appears
logical that this effect would be more pronounced at the forward loca-
tion of the center of gravity as indicated by the data. The flutter
data for the 12-percent-thick blades do not indicate the same trend.

It is possible that there is a smaller effect of Mach number on the
location of the center of pressure for the thinner blade.

Design Criterion

A surmary of the data presented herein indicates a possible design
criterion that may be used to select helicopter blades which can be
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operated flutter-free throughout the subsonic speed range. The nature
and significance of this tentative criterion may be better understood
by a discussion of the manner in which it is derived and of the blade
parameters involved.

Maximum Mach number at flutter.- An analysis of the data presented
in table II, a portion of which is plotted in figures 11 and 12, shows
that the over-all Mach number effect was such that, for the blades
tested, if flutter did not occur at a tip Mach number less than about
0.73%, it would not occur at any tip Mach number up to a value slightly
greater than unity, the limit of the tests. The fact that the flutter
boundary occurs at a tip Mach number of about 0.73 may be associated
with local supercritical flow conditions and to the rearward movement
of the center of pressure which is a stabilizing condition. Some evi-
dence of this is shown by the blade-twist data presented in the appendix.

Derivation of flutter parameters.- The operating line on a flutter
plot of the type shown in figures 11 and 12 is a straight radial line
from the origin, the slope of which is inversely proportional to the

dimensionless flutter parameter (bab/c>wpo/p. A particular operating

line is shown in figure 11(a). The extent to which a blade will be
subjected to flutter as the rotor speed is increased depends on the
slope of the operating line and the blade pitch angle. As the slope of
the operating line is decreased, or conversely, as the flutter param-

eter (bu&/c)dpo/p is increased, the ranges of pitch angles and speeds

wherein flutter may be obtained gradually decrease and disappear when
the operating line becomes tangent to the envelope flutter boundary.

Thus the flutter parameter (bab/c) po/p is significant in flutter

studies. Its magnitude may be varied by varying the blade chord, blade
torsional frequency, or testing medium. Generally, values of the blade
chord and torsional frequency are to some extent under the control of
the designer. However, it is sometimes more convenient from a research
standpoint to vary the testing medium as was done in the present
investigation.

In order to demonstrate more clearly the effect of the flutter
parameter (bub/c)VpO/p on the flutter of the model blades, the data of
figure 11(a) is first cross-plotted as shown in figure 13. This is
accomplished by drawing a series of radial or operating lines from the
origin of figure 11(a), each of which has a slope of constant (b“b/c> po/p_
Upon intersection of a particular radial line with the flutter curve for
a given pitch-angle setting, the value of the tip Mach number is noted.

The mean twist for the pitch-angle setting is then obtained from table II.
Assuming a linear radial distribution of twist, the twist at 0.0R is
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calculated and added algebraically to the pitch-angle setting to obtain

the actual pitch angle at 0.0R at flutter. The Mach number at flutter

ig then plotted against the corrected pitch-angle setting (GO GR) for
: .OR/q

the variocus constant values of (bah/c) po/p as shown in figure 1%. The
Mach number at flutter is then replotted as shown in figure 14 as a

function of the flutter parameter (b“b/C)VDO/D for various pitch

angles. The lower or envelope flutter boundary is simply a transfor-
mation of the envelope flutter boundary of figure 11(a).

Discussion of design criterion.- The presentation of the data in
the form of figure 1L permits a more rational evaluation of the role of
some of the parameters on the envelope flutter boundary, and facilitates
the discussion of the flutter region in terms of the flutter parameter

(bdb/b) po/p. The figure shows that there is a maximum value of

(bub/c)”po/p above which no flutter was obtained for tests up to a tip

Mach number slightly greater than unity, and this value is termed the
critical value. Thus a possible criterion for stall flutter is indi-
cated. Since, for practical applications, the sound speed is a con-
stant, it may be possible for blades having a value of buw, greater

than the value corresponding to this critical value to be operated
flutter-free throughout the pitch-angle and Mach number range.

In order to facilitate a comparison of the results in terms of the
flutter parameter for various blades having different thickness, chord-
wise center-of-gravity location, and structural damping, the data pre-
sented in table II were plotted and cross-plotted as discussed in the
previous paragraphs to obtain envelope flutter boundaries similar to the
one shown in figure 1l4. The resulting envelope flutter boundaries are
shown in figure 15. The critical values of these envelope flutter
boundaries are replotted in figure 16 as a function of structural

damping. Data are also presented showing critical values of (bda/c) po/p

for the propeller of reference 2 and the wing of reference 3.

There are no apparent effects of chordwise center-of-gravity loca-
tion or thickness on the critical values of (bab/c)”po/ . There 1is,
however, an upward trend of the critical values as the torsional damping
is reduced, and, on the basis of these results, a design criterion can

be stated, namely, that helicopter blades having values of structural
damping above 0.03 should be able to operate completely flutter-free if

the value of the design parameter (bad/c) po/p is greater than 0.3,
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The critical values of (baa/%)“po/p for the wing and propeller results

as shown in figure 16 are appreciably higher than those for the heli-
copter blades tested, but the structural damping coefficients for the
wing and propeller were much smaller than those for the helicopter

blades. Structural damping appears to have considerable effect on the

critical values of (buu/c)wpo/p, but no conclusion can be drawn com-

paring the propeller and wing flutter criterion to the helicopter-blade
flutter criterion since the length-to-chord ratio as well as section
thickness ratio for the helicopter blades were much higher than for the
wing and propeller.

It should be emphasized that the results reported herein apply
specifically to the hovering case and may not be valid for conditions
of forward flight.

CONCLUSIONS

The results of an experimental flutter investigation conducted in
the Langley vacuum sphere flutter test apparatus to determine the
effects of various parameters including Mach number on the flutter of
some model helicopter rotor blades indicates the following conclusions:

1. Forward movement of the chordwise center-of-gravity location
raised the flutter speed coefficient at low pitch angles, but had
relatively little effect on the flutter speed coefficient at high pitch
angles.

2. The minimum values of the flutter speed coefficient increased
with increases in the torsional structural damping coefficient.

3. At a given Mach number and blade -pitch-angle setting, flutter
occurred at essentially constant dynamic pressure at densities ranging
from 0.0012 to 0.0030 slug per cubic foot. This was observed at all
pitch angles up to the angle corresponding to minimum flutter speed
coefficlent.

k. At blade pitch angles below the stall angle. the flutter speed
coefficlent decreased as the Mach number was increased up to a certain
value of Mach number, above which the flutter speed coefficient increased
rapidly. The initial reduction disappeared at pitch angles near the
stall angle.

5. For the blades tested, if flutter did not occur at a tip Mach
number less than 0.73, it would not occur at any tip Mach number up to
8lightly greater than 1, the limit of the tests.
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6. A tentative design criterion based on the particular tests
covered is presented. This criterion implies that helicopter blades
having values of the torsional structural damping coefficient greater

than 0.0% and the design flutter parameter (bad/c) po/p above 0.3

should be able to operate completely flutter-free. (b = blade half-
chord; a, = natural first torsional frequenay; c¢ = speed of sound in

testing medium; p, = standard density; and p = operating density.)

Langley Aerconautical Laboratory,
National Advisory Committee for Aeronautlcs,
Langley Field, Va., May 5, 1953.
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APPENDIX

A BRIEF STUDY OF BLADE TWIST AS INFLUENCED BY BLADE PITCH
ANGIE, DYNAMIC PRESSURE, FLUTTER AND DIVERGENCE,

AND MACH NUMBER

Inasmuch as the flutter characteristics of the blades tested were
found to be dependent on the blade pitch angle, it was of interest to
obtain some over-all irdication of the manner in which blade pitch angle
was altered by blade twist. Perhaps of greater importance though is the
fact that the blade twist is a good gualitative index of the chordwise
location of the center of pressure, which appears to have considerable
influence on the flutter characteristics of the blades. Figures 17
and 18 present some experimental measurements which show the blade
twist, measured at the tip, for a 12-percent-thick blade with the chord-
wise center of gravity located at 37.3 percent chord. Figure 19 pre-
sents a comparison of experimental and calculated values of blade twist
at a low pitch angle at rotor speeds approaching the blade divergence
speed. Figures 20 and 21 show some experimental results, tabulated in
table IIT, as to the effect of tip Mach number and divergence on blade
twist.

Twist at Low Tip Mach Numbers

Some causes of blade twist.- The data points presented in figure 17
were obtained by varying the density at constant rotor speed to elimi-
nate the effect of Mach number on twist. In addition to the aerodynamic
forces and moments which produce twist, there are also body forces and
moments due to the spanwise and chordwise components of the centrifugal
acceleration of the blade mass particles, references 10 and 11. The
spanwise components result in so-called 'ribbon forces" which tend to
minimize blade twist in either positive or negative directions. The
resulting moments are directly proportional to the blade twist and are,
therefore, negligible if the twist is negligible. The chordwise com-
ponents produce moments which are proportional to the sine of twice the
pitch angle, the direction of which is such as to restore the pitch
angle to zero. If these moments are significant for the blade in ques-
tion, they should show up at the high pitch angles and would result in
negative blade twist at zero density. The data presented in figure 17
for pitch angle settings of 15°, 17.5°, and 20° indicate that the twist
at zero density is nearly zero (as shown by the dashed lines ). Since
this appears to be true for high pitch angles, it seems reasonable that
the curves for low pitch angles would follow the trend indicated by the
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dashed lines in showing zero twist at zero density. Thus, it is con-
cluded for these blades that the effects of centrifugal forces on blade
twist are small compared to the aerodynamic forces.

Effect of blade pitch angle.- The data also show that as the pitch
angle is increased from zero, the angle of twist, at a given value of
dynamic pressure, also increases. This trend continues, as shown by
the cross-plotted data of figure 18 until the pitch angle approaches
approximately 15°, whereupon further increases in the pitch angle result
in a reduction in twist. As the pitch angle approaches an angle of 259,
the blade twist is zero, indicating that the center of pressure has
moved rearward and has become coincident with the center of gravity. As
the pitch angle is further increased, the center of pressure apparently
moves rearward of the center of gravity and the twist becomes negative.

With the exception of the blade-pitch-angle setting of 50, the
maximum value of the dynamic pressure for each blade-pitch-angle setting
of the curves in figure 17 is slightly less than the dynamic pressure at
which flutter occurred. No flutter was obtained at the blade-pitch-
angle setting of 59; however, the curve does show a tendency toward
divergence. The limiting value of the dynamic pressure was due to the
1imit on the rotor speed imposed by centrifugal stresses. If flutter
had occurred, it is likely that, at this relatively low pitch angle, it
would have been of the classical bending-torsion type.

Theoretical prediction of twist and divergence.- An attempt is made
in the following paragraphs to show how the theory of references 7 and 9
may be applied to predict the divergence tendency exhibited by the blade
in figure 17 at the 50 pitch-angle setting. The theory is advanced in
reference 7 that the dynamic-stiffness axis may be taken as the center
of gravity of the section and the divergence speed will be approximately
equal to the classical flutter speed. The approximate classical flutter
speed coefficient for a heavy wing with a low bending-to-torsion fre-
quency ratio (& condition which is met by the rotor blade under con-
sideration) was derived in reference 9 and repeated in a more convenient
form in reference 7. Assuming that the effective velocity is the
velocity at 0.8R, the flutter speed coefficient may be written 1in the
modified form as follows:

VO.8RF= T 1/ )

bay, {Po Ko Xog " 1/4

where the subscript o 1is used to designate standard atmospheric
conditions.
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By substituting the appropriate values from table I for blade j(r)
into equation (1), the critical value of (VO.8R/b“h)/pzpo was deter-

mined to be 6.1 which indicates that the classical flutter or dlvergence
speed ccefficient of the blade was Just slightly greater than the maxi-
mum value shown in figure 17.

According to reference 7, for small pitch angles the ratio of blade
twist at successive dynamic pressures (designated by subscripts 1 and 2)
may be expressed as

A6
1 Ccr
(2)

where 9., is the dynamic pressure at flutter or divergence. Inasmuch
2 2
\ V. ¢
as 0.SR £ —9l§5> £ = q/qcr, the ratio of successive values
bay [ P [ |\ P/ Po

of blade twist for corresponding values of the flutter speed coefficient

becomes, after substitution of the critical values of (VO.BR/b“h)Q(p/po)’

— - a — o ] 7

Vv Vv

(g.BR) 2l dre - (:.83) EARS

Uy po Uy po_
= 22 | a 1

(884, = (804), % (5)

(VO.BR) ol dzrn. VO.BR) LRt

buyy Py ’ bayy e,
— ~1 — ~2

where the constant 37.2 is the square of the critical value of the
flutter speed coefficient as previously determined from equation (1)
for the particular blade under consideration.
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Comparison of theory and experiment.- Figure 19 presents a com-
parison of some theoretical and experimental values of blade twist as a
function of flutter speed coefficient as the calculated divergence speed
is approached. The curve of measured twist against flutter speed coef-
ficient shown in figure 17 for a blade-pitch-angle setting of 50 is
repeated along with two calculated curves, one of which is obtained
from equation (3) and the other based on the assumption that the twist
is directly proportional to the dynamic pressure, that is,

2

Vo.8R P
bayy P

_ 2

(Aet)z = (Aet)l — — (&)

Vo.8R e

() &

— =1

In both instances, the initial values of blade twist and flutter speed
coefficient for the calculated curves are assumed to be equal to the

experimental values of A8y = 0.61 and (VO.8R/buﬁ)wp/po = 3., If no

experimental value of twist is available,.the twist may be determined
from equation (3) of reference 7.

A comparison of the three curves of figure 19 shows a definite
tendency of the blade toward divergence; however, the twist is not quite
as great as the theory predicts, the theory being, in this case, some-
what conservative. This may be attributed partly to the increase in
blade stiffness arising from centrifugal forces and, perhaps, partly to
violation of the small-angle limitation of the theory.

Effect of Tip Mach Number on Blade Twist

Figures 20 and 21 show the effect of the flutter speed coefficient
and blade tip Mach number on the twist of a l2-percent-thick blade
operating in mediums having different speeds of sound. The chordwise
center of gravity was located at 37.3 percent chord and the blade pitch
angle was set at 5°. The data are presented in tabular form in
table TIT.

Figure 20 shows the blade twist as a function of the flutter speed
coefficient. The curves for the test mediums having the higher sound

speeds show a tendency toward divergence at a value of (VO.BR/bub)Mp/po

from 3.5 to 4 whereas the curves at low sound speeds show a turnback
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or reduction in twist, probably due to the effect of a rearward movement
of the center of pressure as a result of the increase in Mach number.
The effect of Mach number is more conveniently shown in figure 21 where
the blade twist, divided by the value of the flutter speed coefficient
at which it was obtained, 1is plotted as a function of the tip Mach
number.

The curves representing data at the higher sound speeds again show
a tendency toward divergence as discussed in the previous paragraph.
Since this divergent tendency, as shown in figure 20, occurred at essen-
tially constant dynamic pressure in mediums having different sound
speeds, it occurs at different tip Mach numbers. As the sound speed is
progressively lowered, the divergence tendency disappears and a Mach
number effect becomes evident. As the Mach number approaches 0.73, &
turnback in the twist curves is shown and indicates a reduction in twist
with further increases in tip Mach number. The Mach number at which the
turnback occurs is in agreement with the limiting Mach number of the
envelope flutter boundary of figure ll(a), a fact whlch may indicate
that the rise in the value of the flutter speed coefficlent at high Mach
numbers is partially due to a rearward shift of the center of pressure
as evidenced by a reduction in blade pitch angle.
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Eiub radius, 8 inches; rotor radius, 46 inches;

TABLE I.- CHARACTERISTIC BLADE PARAMETERS

flapping hinge radius, 2.5 inchea

{a) NACA 23012 airfoil section

NACA TN 4005

Blade number . . . . . 1(r) 2(f) 2(r) 3(£) 3(r) 4(r) 5(r)
Length, in. . . . . . . 38 38 38 38 38 38
Chord, 4n. . . . . . . L L b I 4 & b
Xogs Percent chord 37.3 27.5 37.3 27.5 37.3 37.3 37.3
Xgp» bercent chord 26.5 25.0 26.5 25.0 26.5 26.5 26.5
GJ, W-1n.2 . . . ... 9,980 | 8,260 [ 9,210 | 7,800 | 7,900 | 8,210 | 9,980
EI, 1b-in.2 . . . . . . 25,500 | 25,500 | 25,500 | 24,300 | 24,300 | 24,300 | 24,300
@n, radians/sec 126 113 119 129 116 126 126
E radiane/sec 327 319 331 364 327 327 327
Qyy» radians/sec . . . . Léek 439 L6 426 sk 421 L6k
TOR « v e e e e e e 0.235 | 0.165 | ©0.235 | 0.165 | 0.235 | 0.235 | 0.235
(A/e)g oo e e 78.0 78.0 78.0 78.0 78.0 78.0 78.0
Bpy s e 0.126 | ©0.105 | 0.110 | 0.134 | 0.095 | 0.170 | 0.1%
Bhy, - c e e e 0.049 0.036 0.040 | ---eun 0.03% 0.056 0.067
By + e e e 0.048 0.093 0.075 0.027 0.034 0.049 0.067
m., SLUBE . . . . . . . 0.181 | 0.181 [ ©0.181 | ©0.181 | 0.181 | 0.181 | 0.181
I, slug-ft2 . . . . . 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055
. S 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | ©0.028 | ©0.028
Yo e e e e e e e 3.695 3.695 3.695 3.695 3.695 3.695 3.695
(b) NACA 23018 airfoil section
Blade number . . . . . . 6(f) 6(r) 7{r) 8(r) 9(r)
Length, in. . . . . . - . 38 38 38 38 38
Chord, in. . . . . . . . b b L 4 N
Xog, Percent chord 28.0 36.5 36.5 36.5 36.5
Xgy, Percent chord 25.0 27.0 27.0 27.0 27.0
GJ, 1b-in.2 . . . .. .. 18,650 20,400 14,150 16,950 16,950
EI, 1b-in.2 . . . . . .. 59,100 59,100 57,800 67,900 67,900
@, 5 radians/sec 173 168 151.0 180 180
Opy s radians/sec g 458 Lsh 488 488
oyy, radians/sec . . . . . 611 616 513 576 562
TgP v e e e e e e 0.168 0.216 0.216 0.216 0.216
(Lfedy oo e 88.1 88.1 88.1 88.1 88.1
Bpy v 0.045 0.076 0.054 0.051 0.051
By + v 0.015 0.04% 0.042 0.059 0.059
By =+ e 0.064 0.069 0.062 0.054 0.224
mp, slugs . . . . . . . - 0.181 0.181 0.181 0.181 0.181
I, slug-ft2 . . . . .. 0.0055 0.0055 0.0055 0.0055 0.0055
S 0.028 0.028 0.028 0.028 0.028
Vg e e e 3.275 3.275 3.275 3.275 3.275
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TABLE III.- EFFECT OF MACH NUMBER AND DIVERGENCE ON BLADE TWIST

E\IACA 23012 blade 4(r); (GO SR) = 5°;, atmospheric densityj
<08 g

v L8y
0.8R [p
v M = JaX:}
© t t buy \ Po t Y0.5R [p
bay | Po
500 160 0.3%2 1.8% 0.5 0.27
2L0 .48 2.74 1.3 47
320 .6L 3.65 3.1 .8
360 .72 k.11 h.1 1.00
400 .80 .57 b.b .96
440 .88 5.0% 4.4 .38
480 .06 5.49 L.o .73
565 160 .28 1.8% 1.1 .60
240 43 2.7 1.9 .60
320 .57 3.65 3.1 .85
360 .64 Lo11 4.3 1.05
400 .71 L.57 6.1 1.34
602 160 .27 1.83 1.0 .55
240 Lo 2.7k 1.8 .66
320 .53 3.65 2.8 -T7
360 .60 h.o11 3.3 .80
L00 .67 4.57 5.6 1.23
Loo .67 a,.01 k.o a1.00
kLo .73 5.0% 6.2 1.2%
440 .73 aly .41 k.o g1.11
480 .80 ay.80 4.9 81.02
715 160 .22 1.83 .7 .38
240 i 2. 74 1.2 b
320 L5 3.65 1.9 .52
Loo .56 .57 5.2 1.14
L20 .50 4.80 7.0 1.46
1120 160 .14 1.83 .8 Ly
320 .29 3,65 1.9 .52
Loo .36 .57 5.2 1.14
L80 43 5.49 9.5 1.73
®Density reduced to 0.77 atmosphere. X7
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Approximate (CT),MX obtained on
| 4 helicopter blades having NACA
' 23012 oand NACA 23018 girfoil sections ;

/

2 A
::NACA 7
L
0 4 8 12 16 20 24

(eo.ea)cv deg

Figure k.- Mean section lift coefficient for the NACA 23012 and 23018 blades
as a function of the blade pitch angle. (The 1ift coefficient is calcu-
lated by Glauert's method, ref. 6, based on a blade element located
at 0.8R.) o = 0.028.
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50 NACA TN 4005

Blade
number

O 2(r)
4 5(r)

—With reflex trailing edge

N
\ \CWifhout reflex trailing edge

i A\
* NN
IR

\/Ln/ v
2
|
NACA -~ —
|
0 4 8 12 16 20 249

Bosr )c. deg

Figure T.- The effect of blade airfoil shape on the flutter speed coeffi-
cient as a function of blade pitch angle at atmospheric densities.

My < 0.k,
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(a) Blade number 2(r); g, = 0.075.

Figure 11.- The effect of tip Mach number on the modified flutter speed
coefficient at various pitch-angle settings for two blades having
NACA 23012 airfoil sections.



NACA TN 4005
AP
4
c>\_0_o‘__o, P 5
3 J o
Voer [P | 5 g
bwg V A &\D\
2 ] 2y (Hoea)s
i N
o 102 .
o Sustained
O\“‘“‘OWM D 152 flutter
I o 240
1flag ~intermittent flutter
- ] 2flags — No ﬂuﬂer ‘
0 2 a4 (S 8 10
M

(b) Blade number 3(r); gy = 0.034.

Figure 11.- Concluded.
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(a) Blade number 6(r); gy = 0.069.

Figure 12.- The effect of tip Mach number on the modified flutter speed
coefficient at various pitch-angle settings for a blade having an
NACA 23018 airfoil section at different chordwise center-of-gravity
locations.
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Figure 12.- Concluded.
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Figure 13.- The effect of blade pitch angle (corrected for twist) on the
tip Mach number at flutter for various values of the dimensionless

bw
flutter parameter —EQE jf;—o for blade 2(r).
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Figure 16.- The variation of critical values of the design flutter
parameter with torsionasl damping.
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Figure 17.- Measured twist as a function of flutter speed coefficient at
various pitch-angle settings for blade 3(r). My < 0.43.
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Figure 18.- Measured twist as a function of pitch-angle setting for
blade 3(r). Data taken from figure 17 for (Vo‘gR/baa)( p/Po) = 1.k,



66 NACA TN L4005

~— Calculated classical
flutter or divergence
speed coefficient

l«— Divergence (ref.7)

8 /]

AG , deg T
1 /«—Experimentcﬂ

6 i

2o
/
0 2 4 6 8 I0

Vosr [P

Figure 19.- A comparison between the experimental and calculated effect
of the flutter speed coefficient on blade twist as the classical flutter
or divergence speed is approached for blade 3(r). (90.83)5 = 50,
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Figure 20.- The effect of the flutter speed coefficient on twist at the
tip of blade 4(r) being rotated in mediums of different sound speeds.

(GO.BR)S = 50.
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Figure 21.- The effect of blade divergence and Mach number on the meas-
ured twist at the tip of blade 4(r) being rotated in mediums at dif-
ferent sound speeds. (GO.BR)S = 50,

NACA - Langley Field, Va.



